Abstract
In cancer, oncogene dependency is a phenomenon where a dominant driver oncogene promotes tumor cell proliferation and survival, and loss of this oncogene results in tumor cell death and, eventually, tumor regression. KRAS, a GTPase that regulates cell growth and proliferation, is an oncogene constitutively activated in over 90% of pancreatic cancer. However, clinically effective inhibitors of KRAS have been unsuccessful so efforts have been focused on identifying other potential targets associated with the KRAS signaling network. Spleen tyrosine kinase (SYK), which is expressed at high levels in KRAS‐dependent pancreatic cancer cell lines, may be one of these targets. Our data indicate that SYK activates the mechanistic target of rapamycin kinase complex 1 (mTORC1), which promotes protein translation and cell growth. SYK activation also leads to decreased autolysosome count. In connecting SYK activation with increased mTORC1 activity and decreased autolysosome count, we hypothesis that the MiT/TFE transcription factors are involved. We propose that SYK inhibition in pancreatic cancer cells leads to reduced mTORC1 activity, which reduces phosphorylation of MiT/TFE transcription factors. The unphosphorylated MiT/TFE transcription factors may then enter the nucleus to activate genes for lysosomal biogenesis and autophagy. Autophagy is a process that recycles cellular macromolecules during nutrient deprivation by fusing autophagosomes and lysosomes, produced from lysosomal biogenesis, to generate autolysosomes. From our experiments, we were able to show that SYK inhibition blocks mTORC1‐dependent phosphorylation of MITF and TFEB transcription factors, members of the MiT/TFE family. MITF and TFEB activation leads to increased autophagy due to autolysosomal biogenesis and accumulation. In summary, our studies of the SYK‐mTORC1‐autophagy pathway provide support to investigate SYK as a candidate therapeutic target for pancreatic cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.