Abstract
The large number of attributes in a large dataset can cause a decrease in the level of classification accuracy. Attribute reduction can be a solution to improve classification performance, especially in the K-NN algorithm. This research discusses the classification results of K-NN with attribute reduction using Purity. Based on the results of testing carried out on the Air Quality Dataset, the level of accuracy obtained after attribute reduction was 70.71%, while the level of accuracy obtained before attribute reduction was 56.44%, the increase in accuracy obtained from testing this dataset was equal to 14.27%. The proposed Purity method for attribute reduction can increase the accuracy level of the K-NN classification process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computer Knowledge and Algorithms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.