Abstract

In this paper a global operator approach to the Wess-Zumino-Witten-Novikov theory for compact Riemann surfaces of arbitrary genus with marked points is developed. The term `global' here means that Krichever-Novikov algebras of gauge and conformal symmetries (that is, algebras of global symmetries) are used instead of loop algebras and Virasoro algebras (which are local in this context). The basic elements of this global approach are described in a previous paper of the authors (Russ. Math. Surveys 54:1 (1999)). The present paper gives a construction of the conformal blocks and of a projectively flat connection on the bundle formed by them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.