Abstract

A new implementation of a wearable respiratory inductive plethysmography garment is obtained by knitting a 250 μm thin insulted Cu wire simultaneously with yarn in the round. This was used to integrate a knitted coil in the body of a baby romper suit. During simulated breathing the diameter of knitted coil changes by stretching the knit circularly, causing a variation of the self-inductance of the coil. Coils with 5 rows of integrated metal wire with different stitch types and patterns were investigated to determine their influence on inductance, series resistance and sensitivity. We observed that knit styles that reduce the resistance of the coil, such as lace and jacquard also reduce the inductance and flexibility of the garment. Jacquard with three colours and one metal wire for each colour, gave the highest coil quality factor but also the poorest flexibility. We found that 1/1 rib stitch has the highest self-inductance for all yarn types. Its sensitivity of 0.5 – 0.6 μH/cm is similar to stockinette stitch except when elastic viscose yarn is used. Coils in stockinette stitch and elastic viscose yarn have the highest sensitivity of 0.84 μH/cm. No hysteresis in self-inductance was observed for circumference variations between 44 and 53 cm of the body of the baby romper in 1/1 rib stitch due to the elasticity of knitted garments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call