Abstract

Let G be a group with subgroups A and K (not necessarily normal) such that G = AK and A \cap K = \{1\} . Then G is isomorphic to the knit product , that is, the “two-sided semidirect product” of K by A . We note that knit products coincide with Zappa-Szep products (see [18]). In this paper, as an application of [2, Lemma 3.16], we first define a presentation for the knit product G where A and K are finite cyclic subgroups. Then we give an example of this presentation by considering the (extended) Hecke groups. After that, by defining the Schur multiplier of G , we present sufficient conditions for the presentation of G to be efficient. In the final part of this paper, by examining the knit product of a free group of rank n by an infinite cyclic group, we give necessary and sufficient conditions for this special knit product to be subgroup separable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.