Abstract

This paper solves the Knights and Spies Problem: In a room there are n people, each labelled with a unique number between 1 and n . A person may either be a knight or a spy. Knights always tell the truth, while spies may lie or tell the truth as they see fit. Each person in the room knows the identity of everyone else. Apart from this, all that is known is that strictly more knights than spies are present. Asking only questions of the form: ‘Person i , what is the identity of person j ?’, what is the least number of questions that will guarantee to find the true identities of all n people? We present a questioning strategy that uses slightly less than 3 n / 2 questions, and prove that it is optimal by solving a related two-player game. The performance of this strategy is analysed using methods from the famous ballot-counting problem. We end by discussing two questions suggested by generalisations of the original problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.