Abstract

Prospective knee abduction moments measured during the drop vertical jump task identify those at increased risk for anterior cruciate ligament injury. The purpose of this study was to determine which muscle forces and frontal plane biomechanical features contribute to large knee abduction moments. Thirteen young female athletes performed three drop vertical jump trials. Subject-specific musculoskeletal models and electromyography-informed simulations were developed to calculate the frontal plane biomechanics and lower limb muscle forces. The relationships between knee abduction moment and frontal plane biomechanics were examined. Knee abduction moment was positively correlated to vertical (R = 0.522, P < 0.001) and lateral ground reaction forces (R = 0.395, P = 0.016), hip adduction angle (R = 0.358, P < 0.023) and lateral pelvic tilt (R = 0.311, P = 0.061). A multiple regression showed that knee abduction moment was predicted by reduced gluteus medius force and increased vertical and lateral ground reaction forces (P < 0.001, R2 = 0.640). Hip adduction is indicative of lateral pelvic shift during landing. The coupled hip adduction and lateral pelvic tilt were associated to the increased vertical and lateral ground reaction forces, propagating into higher knee abduction moments. These biomechanical features are associated with ACL injury and may be limited in a landing with increased activation of the gluteus medius. Targeted neuromuscular training to control the frontal pelvic and hip motion may help to avoid injurious ground reaction forces and consequent knee abduction moment and ACL injury risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.