Abstract

This paper proposes a comparison of machine learning (ML) algorithm known as the k-nearest neighbor (KNN) and naïve Bayes (NB) in identifying and diagnosing the harmonic sources in the power system. A single-point measurement is applied in this proposed method, and using the S-transform the measurement signals are analyzed and extracted into voltage and current parameters. The voltage and current features that estimated from time-frequency representation (TFR) of S-transform analysis are used as the input for MLs. Four significant cases of harmonic source location are considered, whereas harmonic voltage (HV) and harmonic current (HC) source type-load are used in the diagnosing process. To identify the best ML, the performance measurement of the proposed method including the accuracy, precision, specificity, sensitivity, and F-measure are calculated. The sufficiency of the proposed methodology is tested and verified on IEEE 4-bust test feeder and each ML algorithm is executed for 10 times due to prevent any overfitting result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.