Abstract

A new condition, called “Local KMS Condition”, characterizing states of a quantum field to which one can ascribe, at a given spacetime point, a temperature, is introduced in this article. It will be shown that the Local KMS Condition (LKMS condition) is equivalent to the Local Thermal Equilibrium (LTE) condition, proposed previously by Buchholz, Ojima and Roos, for states of the quantized scalar Klein–Gordon field that fulfill the analytic microlocal spectrum condition. Therefore, known examples of states fulfilling the LTE condition provide examples of states obeying the LKMS condition with a temperature distribution varying in space and time. The results extend to the generalized cases of mixed-temperature LKMS and LTE states. The LKMS condition therefore provides a promising generalization of the KMS condition, which characterizes global thermal equilibrium states with respect to an inertial time evolution, to states which are globally out of equilibrium but still possess a local temperature distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.