Abstract

As vaccine potential of cross-species protection by a candidate antigen is less explored, in this study we compared cross-specific protective efficacy of Kinetoplastid Membrane Protein-11 (KMP-11) as a DNA vaccine alone and in conjunction with exogenous IL-12 administration in experimental BALB/c model against two most widely prevalent forms of clinical diseases caused by Leishmania major (LM) and Leishmania donovani (LD). Whereas, KMP-11 DNA vaccination alone showed significant potential in terms of resolution of splenic and hepatic parasite burden against virulent LD challenge, it showed considerably less efficacy (<70% reduction) against virulent LM challenge in terms of presence of parasite in lymph node. Remarkably exogenous IL-12 administration in the form of IL-12 p35/p40 expression vectors or recombinant protein along with KMP-11 DNA had exactly opposing effect on protection against LM and LD. Exogenous IL-12 administration significantly increased residual LD-burden but enhanced the protective efficacy of KMP-11 DNA vaccine against LM compared to KMP-11 immunization alone. Elucidation of effector mechanism showed KMP-11 DNA induced protection against LD was associated with the generation of mixed Th1/Th2 response, while KMP-11/IL-12-induced comparable protection against LM was associated with high IgG2a titre indicative of a polarized Th1 response. Exogenous IL-12 administration resulted in robust gamma interferon (IFN-γ) production and suppression of IL-4 from CD4+ T cell against both LM and LD. Nevertheless protective immune response was only compromised against LD infection where frequency of anti-KMP-11 CTL response was significantly reduced after exogenous IL-12 administration. Our study provides a comparative evaluation of effector mechanisms in the assessment of cross-specific protection by KMP-11 and KMP-11/IL-12 immunization against these two prevalent forms of leishmaniasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.