Abstract

This paper focuses on the analysis based on the clustering and the classification method of fatigue strain signals. Very few detailed studies have been carried out on the classification of fatigue damage, especially in the automotive field. Fatigue strain signals were observed on the coil springs of vehicles during road tests. The strain signals were then extracted using the Wavelet Transform approach. The features extraction was grouped using the K-means clustering method to obtain the appropriate number of data groups. A classification process was executed to obtain the optimum pattern recognition through the use of artificial neural network (ANN). Based on the results of the ANN classification with an accuracy of 92 %, a total of five classes or levels of fatigue damage were obtained. Based on the results, the data distribution was mostly scattered in the lower class, namely in the first class with the fatigue damage ranging from 1.98 × 10−7 to 8.18 × 10−5. The highest fatigue damage was in the fifth class with values ranging from 1.14 × 10−3 to 1.65 × 10−3. Based on this clustering and classification, the level of fatigue damage could be classified into five stages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.