Abstract
Because the K-Means algorithm is easy to fall into the local optimum and the Cuckoo search (CS) algorithm is affected by the step size, this paper proposes a K-Means clustering algorithm based on improved cuckoo search (ICS-Kmeans). The algorithm is compared with the original K-means, the Kmeans algorithm based on particle swarm optimization (PSO-Kmeans) and the K-Means algorithm based on the cuckoo search (CS-Kmeans). The experimental results show that the proposed algorithm can obtain better clustering effect, faster convergence rate and better accuracy rate through the experimental test on the UCI standard data set. The algorithm is also applied to the clustering of the characteristic parameters of the heart sound MFCC. The results show that a better clustering center can be obtained, the algorithm converges fast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.