Abstract
Currently, one method to deal with the storage and computation of multimedia retrieval applications is an approximate nearest neighbor (ANN) search. Hashing algorithms and Vector quantization (VQ) are widely used in ANN search. So, K-mean clustering is a method of VQ that can solve those problems. With the increasing growth of multimedia data such as text view, image view, video view, audio view, and 3D view. Thus, it is a reason that why multimedia retrieval is very important. We can retrieve the results of each media type by inputting a query of that type. Even though many hashing algorithms and VQ techniques are proposed to produce a compact or short binary codes. In the real-time purposes the exhaustive search is impractical, and Hamming distance computation in the Hamming space suffers inaccurate results. The challenge of this paper is focusing on how to learn multimedia raw data or features representation to search on each media type for multimedia retrieval. So we propose a new search method that utilizes K-mean hash codes by computing the probability of a cluster in the index code. The proposed employs the index code from the K-mean cluster number that is converted to hash code. The inverted index table is constructed basing on the K-mean hash code. Then we can improve the original K-mean index accuracy and efficiency by learning a deep neural network (DNN). We performed the experiments on four benchmark multimedia datasets to retrieve each view such as 3D, image, video, text, and audio, where hash codes are produced by K-mean clustering methods. Our results show the effectiveness boost the performance on the baseline (exhaustive search).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.