Abstract
비접촉 장문을 인식하기 위해서는 영상의 크기 및 회전 변형을 효과적으로 해결해야 한다. 본 연구에서는 손의 크기와 방향에 따라 관심영역(ROI)을 추출한 후 정규화하여 일차적으로 이러한 변형을 최소화하였다. 본 논문에서는 KLT(Kanade-Lukas-Tomasi) 특징점에 기반한 비접촉 장문인식 방법을 제안한다. 대응되는 KLT 특징점 주위의 국소영역에 대한 텍스처를 비교하여 대응되는 특징점을 검출한 후, 특징점 쌍의 변위 크기와 방향을 나타내는 변위벡터들 간의 유사도를 비교하여 장문을 인식한다. CASIA 공개 데이터베이스를 이용한 실험결과 제안된 방법이 비접촉 장문인식에 효과적임을 확인할 수 있었다. 특히 다중 가버 필터를 이용하였을 때 99%를 상회하는 정인식률을 얻을 수 있었다. An effective solution to the variation on scale and rotation is required to recognize contactless palmprint. In this study, we firstly minimize the variation by extracting a region of interest(ROI) according to the size and orientation of hand and normalizing the ROI. This paper proposes a contactless palmprint recognition method based on KLT(Kanade-Lukas-Tomasi) feature points. To detect corresponding feature points, texture in local regions around KLT feature points are compared. Then, we recognize palmprint by measuring the similarity among displacement vectors which represent the size and direction of displacement of each pair of corresponding feature points. An experimental results using CASIA public database show that the proposed method is effective in contactless palmprint recognition. Especially, we can get the performance of exceeding 99% correct identification rate using multiple Gabor filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: KIPS Transactions on Software and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.