Abstract

G. Ricotta and E. Royer (2018) have recently proved that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums $S(a,b;p^n)/p^(n/2) converge in law in the Banach space of complex-valued continuous function on [0,1] to an explicit random Fourier series as (a,b) varies over (Z/p^nZ)^\times\times(Z/p^nZ)^\times, p tends to infinity among the odd prime numbers and n>=2 is a fixed integer. This is the analogue of the result obtained by E. Kowalski and W. Sawin (2016) in the prime moduli case. The purpose of this work is to prove a convergence law in this Banach space as only a varies over (Z/p^nZ)^\times, p tends to infinity among the odd prime numbers and n>=31 is a fixed integer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.