Abstract

The transcription factor Kruppel-like factor 4 (KLF4) may induce tumorigenesis or suppress tumor growth in a tissue-dependent manner. We found that overexpression of KLF4 induced not only human acute T-acute lymphoblastic leukemia (T-ALL) cell lines but also primary samples from T-ALL patients to undergo apoptosis through the BCL2/BCLXL pathway in vitro. T cell-associated genes including BCL11B, GATA3, and TCF7 were negatively regulated by KLF4 overexpression. Especially, KLF4 induced SUMOylation and degradation of BCL11B. However, the KLF4-induced apoptosis in T-ALL was rescued by the in vivo microenvironment. Furthermore, the invasion capacity of T-ALL to hosts was compromised when KLF4 was overexpressed. In normal human T cells, the overexpression of KLF4 severely impaired T cell development at early stages, but the blockage of T cell development was resumed by restoration of GATA3 or ICN1. In summary, our data demonstrate that KLF4 acts as a tumor suppressor in malignant T cells and that downregulation of KLF4 may be a prerequisite for early human T cell development and homeostasis. DisclosuresNo relevant conflicts of interest to declare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.