Abstract

Mycobacterium tuberculosis has developed diverse mechanisms to survive inside phagocytic cells, such as macrophages. Phagocytosis is a key process in eliminating invading pathogens; thus, M. tuberculosis efficiently disrupts phagosome maturation to ensure infection. However, inflammatory cytokines produced by macrophages in response to early M. tuberculosis infection are key to promoting bacterial clarification. IFN-γ enhances M. tuberculosis engulfment and destruction by reprogramming macrophages from phagocytosis to macropinocytosis. Here, we show that the transcription factor Krüppel-like factor 10 (Klf10) plays a positive role in M. tuberculosis survival and infection by negatively modulating IFN-γ levels. Naïve Klf10-deficient macrophages produce more IFN-γ upon stimulation than wild-type macrophages, thus enhancing bacterial uptake and bactericidal activity achieved by macropinocytosis. Moreover, Klf10⁻/ ⁻ macrophages showed cytoplasmic distribution of coronin 1 correlated with increased pseudopod count and length. In agreement with these observations, Klf10⁻/ ⁻ mice showed improved bacterial clearance from the lungs and increased viability. Altogether, our data indicate that Klf10 plays a critical role in M. tuberculosis survival by preventing macrophage reprogramming from phagocytosis to macropinocytosis by negatively regulating IFN-γ production upon macrophage infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call