Abstract

Klein tunneling is a counterintuitive quantum-mechanical phenomenon, predicting perfect transmission of relativistic particles through higher-energy barriers. This phenomenon was shown to be supported at normal incidence in graphene due to pseudospin conservation. Here I show that Klein-tunneling analogy can occur in classical systems, and remarkably, does not rely on mimicking graphene's spinor wave-function structure. Instead, the mechanism requires a particular form of constitutive parameters of the penetrated medium, yielding transmission properties identical to the quantum tunneling in graphene. I demonstrate this result by simulating tunneling of sound in a two-dimensional acoustic metamaterial. More strikingly, I show that by introducing a certain form of anisotropy, the tunneling can be made unimpeded for any incidence angle, while keeping most of its original Klein dispersion properties. This phenomenon may be denoted by the omnidirectional Klein-like tunneling. The suggested tunneling mechanism and its omnidirectional variant may be useful for applications requiring lossless and direction-independent transmission of classical waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.