Abstract

A reduced shallow water model under constant, non-zero advection in the infinite channel is considered. High-order (Givoli–Neta) non-reflecting boundary conditions are introduced in various configurations to create a finite computational space and solved using a spectral element formulation with high-order time integration. Numerical examples are used to demonstrate the synergy of using high-order spatial, time, and boundary discretization. We show that by balancing all numerical errors involved, high-order accuracy can be achieved for unbounded domain problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.