Abstract
The Klein paradox, first introduced in relation to chiral tunneling, is also manifested in the study of bound-states in single-layer graphene with a 1D square-well potential. We derive analytic (and numerical) solutions for bound-state wavefunctions, in the absence and in the presence of an external transverse magnetic field, and calculate the corresponding dipole transition rates, which can be probed by photon absorption experiments. The role of parity and time-reversal symmetries is briefly discussed. Our results are also relevant for the physics of bound states of light in periodic optical waveguide structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.