Abstract
Corn is one of the substitute staple foods in Indonesia after rice. Maize crops grown in Indonesia often experience considerable losses due to maize plant diseases. Generally, plant diseases are initially caused by morphological changes in the leaves. Accurate detection and classification of diseases that appear on the leaves will prevent the widespread spread of the disease. This study will compare classification algorithms, namely Support Vector Machine, K-Nearest Neighbors, and Multilayer Perceptron to find the best algorithm in the classification of leaf disease in corn plants, namely, cercospora leaf spot gray, common rust, and northern leaf blight using the VGG-16 deep learning model used as image feature extraction. The results showed that the Multilayer Perceptron algorithm produced the best values with accuracy, precision, and recall of 97.4% each.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Computer Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.