Abstract

Cooking and heating with solid fuels results in high levels of household air pollutants, including particulate matter (PM); however, limited data exist for size fractions smaller than PM2.5 (diameter less than 2.5 μm). We collected 24-h time-resolved measurements of PM2.5 (n = 27) and particle number concentrations (PNC, average diameter 10–700 nm) (n = 44; 24 with paired PM2.5 and PNC) in homes with wood-burning traditional and Justa (i.e., with an engineered combustion chamber and chimney) cookstoves in rural Honduras.The median 24-h PM2.5 concentration (n = 27) was 79 μg/m3 (interquartile range [IQR]: 44–174 μg/m3); traditional (n = 15): 130 μg/m3 (IQR: 48–250 μg/m3); Justa (n = 12): 66 μg/m3 (IQR: 44–97 μg/m3). The median 24-h PNC (n = 44) was 8.5 × 104 particles (pt)/cm3 (IQR: 3.8 × 104–1.8 × 105 pt/cm3); traditional (n = 27): 1.3 × 105 pt/cm3 (IQR: 3.3 × 104–2.0 × 105 pt/cm3); Justa (n = 17): 6.3 × 104 pt/cm3 (IQR: 4.0 × 104–1.2 × 105 pt/cm3). The 24-h average PM2.5 and particle number concentrations were correlated for the full sample of cookstoves (n = 24, Spearman ρ: 0.83); correlations between PM2.5 and PNC were higher in traditional stove kitchens (n = 12, ρ: 0.93) than in Justa stove kitchens (n = 12, ρ: 0.67). The 24-h average concentrations of PM2.5 and PNC were also correlated with the maximum average concentrations during shorter-term averaging windows of one-, five-, 15-, and 60-min, respectively (Spearman ρ: PM2.5 [0.65, 0.85, 0.82, 0.71], PNC [0.74, 0.86, 0.88, 0.86]).Given the moderate correlations observed between 24-h PM2.5 and PNC and between 24-h and the shorter-term averaging windows within size fractions, investigators may need to consider cost-effectiveness and information gained by measuring both size fractions for the study objective. Further evaluations of other stove and fuel combinations are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.