Abstract

Energy metabolism and reproduction are closely linked and reciprocally regulated. The detrimental effect of underweight on reproduction complicates the safety evaluation of anti-obesity drugs, making it challenging to distinguish pathological changes mediated through the intended drug-induced weight loss from direct drug effects on reproductive organs. Four-weeks dosing of normal weight Sprague Dawley rats with a glucagon-like peptide 1 (GLP-1)/glucagon receptor co-agonist induced a robust weight loss, accompanied by histological findings in prostate, seminal vesicles, mammary glands, uterus/cervix and vagina. Characterization of the hypothalamus-pituitary-gonadal (HPG) axis in male rats revealed reduced hypothalamic Kiss1 mRNA levels and decreased serum luteinizing hormone (LH) and testosterone concentrations following co-agonist dosing. These alterations resemble hypogonadotropic hypogonadism typically seen in adverse energy deprived conditions, like chronic food restriction. Concomitant daily administration of kisspeptin-52 from day 21 to the end of the four-week co-agonist dosing period evoked LH and testosterone responses without normalizing histological findings. This incomplete rescue by kisspeptin-52 may be due to the rather short kisspeptin-52 treatment period combined with a desensitization observed on testosterone responses. Concomitant leptin treatment from day 21 did not reverse co-agonist induced changes in HPG axis activity. Furthermore, a single co-agonist injection in male rats slightly elevated LH levels but left testosterone unperturbed, thereby excluding a direct acute inhibitory effect on the HPG axis. Our data suggest that the reproductive phenotype after repeated co-agonist administration was driven by the intended weight loss, however, we cannot exclude a direct organ related effect in chronically treated rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.