Abstract

Nonaqueous, ionic liquid-based aluminum chloride-graphite batteries (AlCl3-GBs) are a highly promising post-Li-ion technology for low-cost and large-scale storage of electricity because these batteries feature exclusively highly abundant chemical elements and simple fabrication methods. In this work, we demonstrate that synthetic kish graphite, which is a byproduct of steelmaking, can be used as a cathode in AlCl3-GB and exhibits high capacities of ≤142 mAh g-1. The comprehensive characterization of kish graphite flakes and other forms of graphite by X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller surface area analysis provides solid evidence that the exceptional electrochemical behavior of kish graphite flakes is mainly determined by the high structural order of carbon atoms, a low level of defects, and a unique "crater morphology". In view of the nonrocking chair operation mechanism of AlCl3-GB, we have tested the achievable energy densities as a function of the composition of chloroaluminate ionic liquid (AlCl3 content) and have obtained energy densities of up to 65 Wh kg-1. In addition, the kish graphite flakes can rapidly charge and discharge, offering high power densities of up to 4363 W kg-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call