Abstract

First, we obtain a new formula for Bremermann type upper envelopes, that arise frequently in convex analysis and pluripotential theory, in terms of the Legendre transform of the convex- or plurisubharmonic-envelope of the boundary data. This yields a new relation between solutions of the Dirichlet problem for the homogeneous real and complex Monge-Ampere equations and Kiselman's minimum principle. More generally, it establishes partial regularity for a Bremermann envelope whether or not it solves the Monge-Ampere equation. Second, we prove the second order regularity of the solution of the free-boundary problem for the Laplace equation with a rooftop obstacle, based on a new a priori estimate on the size of balls that lie above the non-contact set. As an application, we prove that convex- and plurisubharmonic-envelopes of rooftop obstacles have bounded second derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.