Abstract

The Kirkwood-Buff (KB) theory provides a rigorous framework to predict thermodynamic properties of isotropic liquids from the microscopic structure. Several thermodynamic quantities relate to KB integrals, such as partial molar volumes. KB integrals are expressed as integrals of RDFs over volume but can also be obtained from density fluctuations in the grand-canonical ensemble. Various methods have been proposed to estimate KB integrals from molecular simulation. In this work, we review the available methods to compute KB integrals from molecular simulations of finite systems, and particular attention is paid to finite-size effects. We also review various applications of KB integrals computed from simulations. These applications demonstrate the importance of computing KB integrals for relating findings of molecular simulation to macroscopic thermodynamic properties of isotropic liquids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.