Abstract

Here, we perform structural, thermodynamic, and kinetics tests of the Kirkwood-Buff-derived force field, KBFF20, for peptides and proteins developed in the previous article. The physical/structural tests measure the ability of KBFF20 to capture the experimental J-couplings for small peptides, to keep globular monomeric and oligomeric proteins folded, and to produce the experimentally relevant expanded conformational ensembles of intrinsically disordered proteins. The thermodynamic-based tests probe KBFF20's ability to quantify the preferential interactions of sodium chloride around native β-lactoglobulin and urea around native lysozyme, to reproduce the melting curves for small helix- and sheet-based peptides, and to fold the small proteins Trp-cage and Villin. The kinetics-based tests quantify how well KBFF20 can match the experimental contact formation rates of small, repeat-sequence peptides of variable lengths and the rotational diffusion coefficients of globular proteins. The results suggest that KBFF20 is naturally able to reproduce properties of both folded and disordered proteins, which we attribute to the use of the Kirkwood-Buff theory as the foundation of the force field's development. However, we show that KBFF20 tends to lose some well-defined secondary structural elements and increases the percentage of coil regions, indicating that the perfect balance of all interactions remains elusive. Nevertheless, we argue that KBFF20 is an improvement over recently modified force fields that require ad hoc interventions to prevent the collapse of intrinsically disordered proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call