Abstract

An equiangular tight frame (ETF) is a set of unit vectors in a Euclidean space whose coherence is as small as possible, equaling the Welch bound. Also known as Welch-bound-equality sequences, such frames arise in various applications, such as waveform design and compressed sensing. At the moment, there are only two known flexible methods for constructing ETFs: harmonic ETFs are formed by carefully extracting rows from a discrete Fourier transform; Steiner ETFs arise from a tensor-like combination of a combinatorial design and a regular simplex. These two classes seem very different: the vectors in harmonic ETFs have constant amplitude, whereas Steiner ETFs are extremely sparse. We show that they are actually intimately connected: a large class of Steiner ETFs can be unitarily transformed into constant-amplitude frames, dubbed Kirkman ETFs. Moreover, we show that an important class of harmonic ETFs is a subset of an important class of Kirkman ETFs. This connection informs the discussion of both types of frames: some Steiner ETFs can be transformed into constant-amplitude waveforms making them more useful in waveform design; some harmonic ETFs have low spark, making them less desirable for compressed sensing. We conclude by showing that real-valued constant-amplitude ETFs are equivalent to binary codes that achieve the Grey-Rankin bound, and then construct such codes using Kirkman ETFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call