Abstract

Vanadium dioxide (VO2) has received widespread attention for application in energy-efficient smart windows because of its distinct thermochromic property in the near-infrared region during the reversible metal-insulator phase transition. In this study, lepidocrocite VOOH ultrafine nanoparticles (NPs) with a diameter less than 30 nm were prepared by a mild and efficient hydrothermal method, and the Kirkendall effect played a vital role in the growth of the VOOH NPs. It was found that VOOH could be transformed into VO2via a subsequent annealing treatment during which the size and morphology of VOOH are well preserved even though the annealing temperature is up to 500 °C. The ultrafine VO2 NPs are crucial for achieving excellent nanothermochromic performance with a luminous transmittance (Tlum) up to 56.45% and solar modulation ability (ΔTsol) up to 14.95%. The environmental durability is well improved by coating VO2 NPs with an SiO2 shell as confirmed via progressive oxidation and acid corrosion experiments. Meanwhile, the Tlum of the VO2@SiO2 film is further increased from 56.45% to 62.29% while the ΔTsol remained unchanged. This integrated thermochromic performance presents great potential for the development of VO2-based smart windows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call