Abstract

We consider the kinetics of chemical interdiffusion along the grain boundaries in stressed thin metal film attached to inert substrate. We show that the kinetics of stress relaxation in the film can be either accelerated or slowed down if compared with the same kinetics in a single-component film, depending on the difference of intrinsic GB diffusion coefficients of the two components. In the case of faster matrix atoms the tensile stress in the film significantly increases beyond its initial value at the beginning of interdiffusion process, while in the case of faster diffuser atoms the compressive stresses develop in the film at the intermediate stages of stress evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.