Abstract

Morphing materials have promising applications in soft robots, intelligent devices, and so forth. Among the various design strategies, kirigami structures are recognized as a powerful tool to obtain sophisticated 3D configurations and unprecedented properties from planar designs on common materials. Here, some kirigami designs are demonstrated for programmable, multistable 3D configurations from composite hydrogel sheets. Via photolithographic polymerization, perforated composite hydrogel sheets are fabricated, in which soft and active hydrogel strips are patterned in stiff and passive hydrogel frames. When immersed in water, the gel strips buckle out of plane due to swelling mismatch. In the kirigami structures, the geometric continuity is disrupted by the introduction of cutouts, and thus the degrees of deformation freedom increases remarkably. Multiple configurations are obtained in a single composite hydrogel by controlling the buckling direction of each strip. Multitier configurations are also obtained by using a hierarchically designed kirigami structure. A multicontact switch of an electric circuit is designed by harnessing the multitier gel configurations. Furthermore, a rotation mode is realized by introducing chirality in the kirigami design. The versatile design of the kirigami structure for programmable deformations should be applicable for other intelligent materials toward promising applications in biomedical devices and flexible electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call