Abstract

The flexible and conformal interconnects for electronic systems as a potential signal transmission device have great prospects in body-worn or wearable applications. High-efficiency wave propagation and conformal structure deformation around human body at radio communication are still confronted with huge challenges due to the lack of methods to control the wave propagation and achieve the deformable structure simultaneously. Here, inspired by the kirigami technology, a new paradigm to construct spoof plasmonic interconnects (SPIs) that support radiofrequency (RF) surface plasmonic transmission is proposed, together with high elasticity, strong robustness, and multifunction performance. Leveraging the strong field-confinement characteristic of spoof surface plasmons polaritons, the Type-I SPI opens its high-efficiency transmission band after stretching from a simply connected metallic surface. Meanwhile, the broadband transmission of the kirigami-based SPI exhibits strong robustness and excellent stability undergoing complex deformations, i.e., bending, twisting, and stretching. In addition, the prepared Type-II SPI consisting of 2 different subunit cells can achieve band-stop transmission characteristics, with its center frequency dynamically tunable by stretching the buckled structure. Experimental measurements verify the on-off switching performance in kirigami interconnects triggered by stretching. Overcoming the mechanical limitation of rigid structure with kirigami technology, the designer SPIs exhibit high stretchability through out-of-plane structure deformation. Such kirigami-based interconnects can improve the elastic functionality of wearable RF electronics and offer high compatibility to large body motion in future body network systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.