Abstract

Kirigami- and oirigami-inspired techniques have emerged as effective strategies for material structure design; however, the use of these techniques is usually limited to soft and deformable materials. Piezoelectric ceramics, which are typical functional ceramics, are widely used in electronic and energy devices; however, the processing options for piezoelectric ceramics are limited by their brittleness and feedstock viscosity. Here, a design strategy is proposed for the preparation of lead-free piezoelectric ceramics inspired by kirigami/origami. This strategy involves direct writing printing and control over the external gravity during the calcination process for the preparation of curved and porous piezoelectric ceramics with specific shapes. The sintered BaTiO3 ceramics with curved geometries produced using this strategy exhibit a high piezoelectric constant (d33 = 275 pCN-1 ), which is 45% higher than that of conventionally sintered sheet ceramics. The curved structure of the ceramics is well-suited for use in the human body and itwasdetermined that these curved ceramics can detect pulse signals. This strategy can be applied in the large-scale and low-cost production of other piezoelectric ceramics with various curved shapes and provides a new approach for the preparation of complex-shaped ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call