Abstract

We generalize the concept of symplectic maps to that of k- symplectic maps: maps whose kth iterates are symplectic. Similarly, k-symmetries and k-integrals are symmetries (resp. integrals) of the kth iterate of the map. It is shown that k-symmetries and k-integrals are related by the k-symplectic structure, as in the k = 1 continuous case (Noether's theorem). Examples are given of k-integrals and their related k-symmetries for k = 1,…,4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.