Abstract

To identify regulators of intracellular signaling we targeted 541 kinases and kinase-related molecules with siRNAs and determined their effects on signaling with a functional proteomics reverse phase protein array (RPPA) platform assessing 42 phospho and total proteins. The kinome wide screen demonstrated a strong inverse correlation between phosphorylation of AKT and MAPK with 115 genes that when targeted by siRNAs demonstrated opposite effects on MAPK and AKT phosphorylation. Network based analysis identified the MAPK subnetwork of genes along with p70S6K and FRAP1 as the most prominent targets that increased phosphorylation of AKT, a key regulator of cell survival. The regulatory loops induced by the MAPK pathway are dependent on TSC2 but demonstrate a lesser dependence on p70S6K than the previously identified FRAP1 feedback loop. The siRNA screen also revealed novel bi-directionality in the AKT and GSK3 interaction, whereby genetic ablation of GSK3 significantly blocks AKT phosphorylation, an unexpected observation as GSK3 has only been predicted to be downstream of AKT. This method uncovered novel modulators of AKT phosphorylation and facilitated the mapping of regulatory loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.