Abstract
The present work investigates several models of a single real scalar field, engendering kinetic term of the Dirac–Born– Infeld type. Such theories introduce nonlinearities to the kinetic part of the Lagrangian, which presents a square root restricting the field evolution and including additional powers in derivatives of the scalar field, controlled by a real parameter. In order to obtain topological solutions analytically, we propose a first-order framework that simplifies the equation of motion ensuring solutions that are linearly stable. This is implemented using the deformation method, and we introduce examples presenting two categories of potentials, one having polynomial interactions and the other with nonpolynomial interactions. We also explore how the Dirac–Born–Infeld kinetic term affects the properties of the solutions. In particular, we note that the kinklike solutions are similar to the ones obtained through models with standard kinetic term and canonical potential, but their energy densities and stability potentials vary according to the parameter introduced to control the new models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.