Abstract

Systolic descent of the atrioventricular plane toward the relatively stationary left ventricular apex is well described. As the atrioventricular plane includes two separate valvular units, systolic atrioventricular plane displacement should not be homogenous. In 6 sheep, sonomicrometric crystals were implanted at the base of the right coronary sinus, anterolateral and posteromedial fibrous trigones, posterior mitral annulus, left ventricular apex, and the tips of the anterior and posterior mitral leaflets. The aortomitral angle was calculated and related to simultaneous left ventricular and aortic pressures and mitral valve movement. The aortomitral angle was largest at end diastole (150.73 degrees +/- 15.48 degrees ). During isovolumic contraction, it narrowed rapidly to 144.90 degrees +/- 16.64 degrees , followed by a slower narrowing during ejection until it reached its smallest angle at end systole (139.66 degrees +/- 16.78 degrees ). During isovolumic relaxation, the aortomitral angle increased to 143.66 degrees +/- 16.02 degrees at the beginning of diastole. During the first third of diastole, it narrowed again to 141 degrees +/- 16.24 degrees before re-expanding to maximum at end diastole. During systole, the atrioventricular plane descended non-homogeneously toward the apex, with kinking at the hinge between the aortic and mitral annulus plane. This deformation of the atrioventricular plane has relevance in valve surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.