Abstract
We consider a discrete version of the Whitney-Graustein theorem concerning regular equivalence of closed curves. Two regular polygons P and P', i.e. polygons without overlapping adjacent edges, are called regularly equivalent if there is a continuous one-parameter family Ps, O ≥ s ≤ 1 of regular polygons with Po = P and P1 = P'. Geometrically the one-parameter family is a kink-free deformation transforming P into P'. The winding number of a polygon is a complete invariant of its regular equivalence class. We develop a linear algorithm that determines a linear number of elementary steps to deform a regular polygon into any other regular polygon with the same winding number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.