Abstract

The pore-lining M2 helix of the nicotinic acetylcholine receptor exhibits a pronounced kink when the corresponding ion channel is in a closed conformation [N. Unwin (1993) Journal of Molecular Biology, Vol. 229, pp. 1101-1124]. We have performed molecular dynamics simulations of isolated 22-residue M2 helices in order to identify a possible molecular origin of this kink. In order to sample a wide range of conformational space, a simulated annealing protocol was used to generate five initial M2 helix structures, each of which was subsequently used as the basis of 300 ps MD simulations. Two helix sequences (M2 alpha and M2 delta) were studied in this manner, resulting in a total of ten 300 ps trajectories. Kinked helices present in the trajectories were identified and energy minimized to yield a total of five different stable kinked structures. For comparison, a similar molecular dynamics simulation of a Leu23 helix yielded no stable kinked structures. In four of the five kinked helices, the kink was stabilized by H bonds between the helix backbone and polar side-chain atoms. Comparison with data from the literature on site-directed mutagenesis of M2 residues suggests that such polar side-chain to main-chain H bonds may also contribute to kinking of M2 helices in the intact channel protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.