Abstract

Stationary kinks (elastostatic shocks) are examined in the context of a base neo-Hookean response augmented with unidirectional reinforcing that is characterized by a single additional constitutive parameter for the additional fiber reinforcing stiffness. Previous work has shown that such a transversely isotropic material can support stationary kinks in plane deformation if the reinforcing is sufficiently great. If the deformation on one side of the kink involves a load axis aligned with the fiber axis, then the more general plane deformation on the other side of the kink is characterized in terms of a one-parameter family of (kink orientation, kink strength)-pairs. Here, the ellipticity status of the two correlated deformation states is shown to span all four possible ellipticity/nonellipticity permutations. If both deformation states are elliptic, then a suitable intermediate deformation is shown to be nonelliptic. Maximally dissipative quasi-static kink motion is examined and interpreted in terms of kink band broadening in on-axis loading. Such maximally dissipative kinks nucleate only in compression as weak kinks, with subsequent motion converting nonelliptic deformation to elliptic deformation. The associated fiber rotation involves three periods: an initial period of slow rotation, a secondary period of rapid rotation, and a final period of essentially constant orienation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call