Abstract

ABSTRACT Relativistic jets are highly collimated plasma outflows emerging from accreting black holes. They are launched with a significant amount of magnetic energy, which can be dissipated to accelerate non-thermal particles and give rise to electromagnetic radiation at larger scales. Kink instabilities can be an efficient mechanism to trigger dissipation of jet magnetic energy. While previous works have studied the conditions required for the growth of kink instabilities in relativistic jets, the radiation signatures of these instabilities have not been investigated in detail. In this paper, we aim to self-consistently study radiation and polarization signatures from kink instabilities in relativistic jets. We combine large-scale relativistic magnetohydrodynamic (RMHD) simulations with polarized radiation transfer of a magnetized jet, which emerges from the central engine and propagates through the surrounding medium. We observe that a localized region at the central spine of the jet exhibits the strongest kink instabilities, which we identify as the jet emission region. Very interestingly, we find quasi-periodic oscillation (QPO) signatures in the light curve from the emission region. Additionally, the polarization degree appears to be anticorrelated to flares in the light curves. Our analyses show that these QPO signatures are intrinsically driven by kink instabilities, where the period of the QPOs is associated with the kink growth time-scale. The latter corresponds to weeks to months QPOs in blazars. The polarization signatures offer unique diagnostics for QPOs driven by kink instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.