Abstract
Many properties of real materials can be modeled using ab initio methods within a single-particle picture. However, for an accurate theoretical treatment of excited states, it is necessary to describe electron-electron correlations including interactions with bosons: phonons, plasmons, or magnons. In this work, by comparing spin- and momentum-resolved photoemission spectroscopy measurements to many-body calculations carried out with a newly developed first-principles method, we show that a kink in the electronic band dispersion of a ferromagnetic material can occur at much deeper binding energies than expected (Eb = 1.5 eV). We demonstrate that the observed spectral signature reflects the formation of a many-body state that includes a photohole bound to a coherent superposition of renormalized spin-flip excitations. The existence of such a many-body state sheds new light on the physics of the electron-magnon interaction which is essential in fields such as spintronics and Fe-based superconductivity.
Highlights
Many properties of real materials can be modeled using ab initio methods within a singleparticle picture
Kinks observed by photoemission at binding energies of 100–300 meV were interpreted as originating from the electron-magnon interaction because the involved energy scale was regarded as too large to reflect electronphonon interaction[12,13,18]
We have experimentally mapped the electronic band structure of an Fe(001) thin film and identified a characteristic kink located 1.5 eV below the Fermi level, which can be reproduced by ab initio calculations based on a diagrammatic expansion of the self-energy, a quantity that describes the deviation of the quasiparticle spectrum from the ‘undressed’ electron picture
Summary
Many properties of real materials can be modeled using ab initio methods within a singleparticle picture. We have experimentally mapped the electronic band structure of an Fe(001) thin film and identified a characteristic kink located 1.5 eV below the Fermi level, which can be reproduced by ab initio calculations based on a diagrammatic expansion of the self-energy, a quantity that describes the deviation of the quasiparticle spectrum from the ‘undressed’ electron picture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.