Abstract

We consider a classical equation known as the $\phi^4$ model in one space dimension. The kink, defined by $H(x)=\tanh(x/{\sqrt{2}})$, is an explicit stationary solution of this model. From a result of Henry, Perez and Wreszinski it is known that the kink is orbitally stable with respect to small perturbations of the initial data in the energy space. In this paper we show asymptotic stability of the kink for odd perturbations in the energy space. The proof is based on Virial-type estimates partly inspired from previous works of Martel and Merle on asymptotic stability of solitons for the generalized Korteweg-de Vries equations. However, this approach has to be adapted to additional difficulties, pointed out by Soffer and Weinstein in the case of general Klein-Gordon equations with potential: the interactions of the so-called internal oscillation mode with the radiation, and the different rates of decay of these two components of the solution in large time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.