Abstract

We study kink dynamics in a very discrete sine-Gordon system where the kink width is of the order of the lattice spacing. Numerical simulations exhibit new properties of kinks in this case: they lose the memory of their initial velocity and propagate preferentially at well-defined velocities which correspond to quasi-steady states, while a kink moving at other velocities suffers relatively high rates of radiation of small amplitude oscillations. When a small external driving force is applied to the system, the same velocities appear as plateus in the strongly nonlinear mobility of the kink. The energy radiated by the kink is calculated for a simple model that preserves the discrete character of the system, and the preferential velocities for the kink are obtained to good accuracy. Similar results may be expected to be valid for other discrete systems manifesting topological solitons. The numerical simulations reveal also new stable “multiple-kink” excitations which can propagate almost freely in extremely discrete systems where “ordinary” simple kinks are pinned to the lattice by discreteness. The stability of the “multiple-kinks” is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.