Abstract

The present study examined non-insulin-treated streptozotocin (STZ)-induced diabetic rats to determine the role of kinins in diabetic nephropathy. Their involvement in the renoprotective effect of the angiotensin-converting enzyme inhibitor (ACEI) ramipril was investigated using the bradykinin (BK) B 2-receptor antagonist, icatibant (HOE 140), or a combination of the two drugs. Although, none of the treatments prevented the decline of the glomerular filtration rate (GFR) in diabetic rats, ramipril (3 mg/kg/day), but not icatibant (HOE 140; 500 μg/kg/day), prevented proteinuria in these animals. However, the antiproteinuric effect of ramipril was reduced by 45% when combined with icatibant. To explore whether the renal kallikrein–kinin system (KKS) belongs to the underlying mechanisms of these findings, we also determined urinary BK levels, renal kallikrein (KLK) and angiotensin-converting enzyme (ACE) activity as well as renal cortical mRNA levels of neutral endopeptidase 24.11 (NEP) and low-molecular weight (LMW) kininogen. STZ led to a reduction of renal KLK and ACE activity and NEP expression and to a three-fold increase of urinary BK excretion and renal kininogen expression. Icatibant given alone had no effect on these parameters. In contrast, ramipril treatment normalized urinary protein and BK excretion as well as kininogen mRNA expression without affecting NEP mRNA expression or KLK and ACE activity. Our data demonstrate that renal BK is increased in severe STZ-induced diabetes mellitus, but may affect glomerular regulation only to a minor degree under this condition. However, kinins are partly involved in the antiproteinuric action of ACEI at this stage of diabetic nephropathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call