Abstract

Kinins are potent pro-inflammatory peptides that act through two G protein-coupled receptor subtypes, B1 (B1R) and B2 (B2R). Kinin-stimulated B2R signaling is often transient, whereas B1R signaling is sustained. This was confirmed by monitoring agonist-stimulated intracellular Ca(2+) mobilization in A10 smooth muscle cells expressing human wild-type B2R and B1R. We further studied the role of receptor membrane trafficking in receptor-mediated phosphoinositide (PI) hydrolysis in model HEK293 cell lines stably expressing the receptors. Treatment of cells with brefeldin A, to inhibit maturation of de novo synthesized receptors, or hypertonic sucrose, to inhibit receptor endocytosis, showed that the basal cell surface receptor turnover was considerably faster for B1R than for B2R. Inhibition of endocytosis, which stabilized B1R on the cell surface, inhibited B1R signaling, whereas B2R signaling was not perturbed. Signaling by a B1R construct in which the entire C-terminal domain was deleted remained sensitive to inhibition of receptor endocytosis, whereas signaling by a B1R construct in which this domain was substituted with the corresponding domain in B2R was not sensitive. B2R and B1R co-expression, which also appeared to stabilize B1R on the cell surface, presumably by receptor hetero-dimerization, also inhibited B1R signaling, whereas B2R signaling was slightly enhanced. Furthermore, the B2R-specific agonist bradykinin (BK) directed both receptors through a common endocytic pathway, whereas the B1R-specific agonist Lys-desArg(9)-BK was unable to do so. These results suggest that B1R-mediated PI hydrolysis depends on a step in receptor endocytosis, whereas B2R-mediated PI hydrolysis does not. We propose that B1R uses at least part of the endocytic machinery to sustain agonist-promoted signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call