Abstract

BackgroundIn sepsis, the endothelial barrier becomes incompetent, with the leaking of plasma into interstitial tissues. VE-cadherin, an adherens junction protein, is the gatekeeper of endothelial cohesion. Kinins, released during sepsis, induce vascular leakage and vasodilation. They act via two G-protein coupled receptors: B1 (B1R) and B2 (B2R). B1R is inducible in the presence of pro-inflammatory cytokines, endotoxins or after tissue injury. It acts at a later stage of sepsis and elicits a sustained inflammatory response. The aim of our study was to investigate the relationships between B1R and VE-cadherin destabilization in vivo in a later phase of sepsis.MethodsExperimental, prospective study in a university research laboratory. We used a polymicrobial model of septic shock by cecal ligation and puncture in C57BL6 male mice or C57BL6 male mice that received a specific B1R antagonist (R-954). We studied the influence of B1R on sepsis-induced vascular permeability 30 h after surgery for several organs, and VE-cadherin expression in the lung and kidneys by injecting R-954 just before surgery. The 96-h survival was determined in mice without treatment or in animals receiving R-954 as a “prophylactic” regimen (a subcutaneous injection of 200 µg/kg, prior to CLP and 24 h after CLP), or as a “curative” regimen (injection of 100 µg/kg at H6, H24 and H48 post-surgery).ResultsB1R inactivation helps to maintain MAP above 65 mmHg but induces different permeability profiles depending on whether or not organ perfusion is autoregulated. In our model, VE-cadherin was destabilized in vivo during septic shock. At a late stage of sepsis, the B1R blockade reduced the VE-cadherin disruption by limiting eNOS activation. The survival rate for mice that received R-954 after sepsis induction was higher than in animals that received an antagonist as a prophylactic treatment.ConclusionsB1R antagonizing reduced mortality in our model of murine septic shock by limiting the vascular permeability induced by VE-cadherin destabilization through maintenance of the macrohemodynamics, consequently limiting organ dysfunctions.

Highlights

  • In sepsis, the endothelial barrier becomes incompetent, with the leaking of plasma into interstitial tissues

  • This study investigates the effects in vivo of a Kinin B1 receptor (B1R) antagonist, the R-954, on septic hyperpermeability, VE-cadherin destabilization and survival in a later phase of polymicrobial sepsis in mice induced by cecal ligation and puncture (CLP)

  • Second experimental series: effect of B1R pharmacological blockade on VE‐cadherin expression We studied the role of sepsis in a potential VE-cadherin destabilization in an in vivo model, and the impact of a B1R antagonist on inflammatory parameters, organ dysfunctions and VE-cadherin maintenance in two organs of interest: lungs and kidneys (WT sham n = 7; wild-type strain C57BL/6J (WT) CLP n = 11; WT CLP R-954 n = 10)

Read more

Summary

Introduction

The endothelial barrier becomes incompetent, with the leaking of plasma into interstitial tissues. Kinins, released during sepsis, induce vascular leakage and vasodilation They act via two G-protein coupled receptors: B1 (B1R) and B2 (B2R). B1R is inducible in the presence of pro-inflammatory cytokines, endotoxins or after tissue injury It acts at a later stage of sepsis and elicits a sustained inflammatory response. The endothelium drives the host–pathogen responses by promoting inflammation, coagulation and vascular permeability, through activation of the contact-phase system and the kinin-kallikrein system When this response is uncontrolled, organ failures occur. Kinins, released at the early stage of sepsis, induce vascular leakage and vasodilation It acts at a later stage and elicits a sustained inflammatory response [4,5,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call