Abstract
Kingiella chilenica, a brooder mollusc, inhabiting soft bottoms of estuarine tidal flats of southern Chile, is well suited to study larval recruitment. It is a tiny semelparous clam with an annual cycle, and whose recruits must survive an inhospitable winter season prior to growing and reaching reproductive maturity in the following summer season. The population dynamics of this clam was studied through periodic sampling over two successive years to follow fluctuations in its' abundance. Obtained data on embryo production and recruit survival over both periods shows that population abundance varied widely between the two years of study. A high level on recruit survival through the winter of the first year resulted in high numbers of adults in the corresponding summer reproductive season. An inverse situation occurred in the second year, with lower recuit survival and, consequently, fewer reproducing adults. However, the lower abundance of adults in the second year was compensated by their having a higher survival rate over the reproductive season as compared with adults of the previous year. Independently of the abundance of the adults, the number of embryos incubated per female was very similar between both periods. Consequently, we suggest that the net contribution of juveniles produced by females per unit substrate was similar between the annual cycles studied. As predicted for a semelparous species (high reproductive effort), the maximization of the reproductive contribution was clearly reflected by a drop in adult somatic weight, particularly in incubating females. Previous data on abundance for this population suggested inter-annual differences of a high magnitude, with periods (e.g. 1986–1988) with abundances reaching 2–6× that presently reported. Probably, stable environmental conditions (e.g. 1986–1988) promote high abundance and survival of reproducers allowing a large contribution of recruits, which in turn show high degrees of survival through the adult phase. The years reported here (2003–2005), however, represent a period of population decline to lower, perhaps minimum, levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Marine Biological Association of the United Kingdom
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.