Abstract

The Spindle Assembly Checkpoint (SAC) delays the onset of anaphase until every chromosome is properly bioriented at the spindle equator. Mutations in SAC genes have been found in tumors and compromised SAC function can increase the incidence of some carcinomas in mice, providing further links between cancer etiology, chromosome segregation defects and aneuploidy. Here we review recent developments in our understanding of SAC control with particular emphasis on the role of the kinetochore, the nature of the tension sensing mechanism and the possibility that the SAC encompasses more than just stabilization of securin and/or cyclin-B via inhibition of the APC/C to delay anaphase initiation. Our primary emphasis is on the SAC in the budding yeast Saccharomyces cerevisiae. However, relevant findings in other cells are also discussed to highlight the generally conserved nature of SAC signaling mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.