Abstract

Hollow nanoparticles featuring tunable structures with spatial and chemical specificity are of fundamental interest. However, it remains a significant challenge to design and synthesize asymmetric nanoparticles with controllable topological hollow architecture. Here, a versatile kinetics-regulated cooperative polymerization induced interfacial selective superassembly strategy is demonstrated to construct a series of asymmetric hollow porous composites (AHPCs) with tunable diameters, architectures and components. The size and number of patches on Janus nanoparticles can be precisely manipulated by the precursor and catalyst content. Notably, AHPCs exhibit excellent photothermal conversion performance under the irradiation of a near infrared (NIR) laser. Thus, AHPCs are utilized as NIR light-triggered nanovehicles and cargos can be controllably released. In brief, this versatile superassembly approach offers a streamlined and powerful toolset to design diverse asymmetric hollow porous composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.